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LUCA BRANDT† AND DAN S. HENNINGSON
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The global linear stability of the flat-plate boundary-layer flow to three-dimensional
disturbances is studied by means of an optimization technique. We consider both the
optimal initial condition leading to the largest growth at finite times and the optimal
time-periodic forcing leading to the largest asymptotic response. Both optimization
problems are solved using a Lagrange multiplier technique, where the objective
function is the kinetic energy of the flow perturbations and the constraints involve
the linearized Navier–Stokes equations. The approach proposed here is particularly
suited to examine convectively unstable flows, where single global eigenmodes of the
system do not capture the downstream growth of the disturbances. In addition, the use
of matrix-free methods enables us to extend the present framework to any geometrical
configuration. The optimal initial condition for spanwise wavelengths of the order of
the boundary-layer thickness are finite-length streamwise vortices exploiting the lift-up
mechanism to create streaks. For long spanwise wavelengths, it is the Orr mechanism
combined with the amplification of oblique wave packets that is responsible for the
disturbance growth. This mechanism is dominant for the long computational domain
and thus for the relatively high Reynolds number considered here. Three-dimensional
localized optimal initial conditions are also computed and the corresponding wave
packets examined. For short optimization times, the optimal disturbances consist of
streaky structures propagating and elongating in the downstream direction without
significant spreading in the lateral direction. For long optimization times, we find the
optimal disturbances with the largest energy amplification. These are wave packets
of Tollmien–Schlichting waves with low streamwise propagation speed and faster
spreading in the spanwise direction. The pseudo-spectrum of the system for real
frequencies is also computed with matrix-free methods. The spatial structure of the
optimal forcing is similar to that of the optimal initial condition, and the largest
response to forcing is also associated with the Orr/oblique wave mechanism, however
less so than in the case of the optimal initial condition. The lift-up mechanism is
most efficient at zero frequency and degrades slowly for increasing frequencies. The
response to localized upstream forcing is also discussed.

† Email address for correspondence: luca@mech.kth.se



182 A. Monokrousos, E.
�

Akervik, L. Brandt and D. S. Henningson

1. Introduction
The flat-plate boundary layer is a classic example of convectively unstable flows;

these behave as broadband amplifiers of incoming disturbances. As a consequence, a
global stability analysis based on the asymptotic behaviour of single eigenmodes of
the system will not capture the relevant dynamics. From this global perspective, all
the eigenmodes are damped, and one has to resort to an input/output formulation in
order to obtain the initial conditions yielding the largest possible disturbance growth
at any given time and the optimal harmonic forcing. To do this, an optimization
procedure is adopted. The aim of this work is to investigate the global stability of the
flow over a flat plate subject to external perturbations and forcing and to examine
the relative importance of the different instability mechanisms at work. The approach
adopted here can be extended to any complex flow provided a numerical solver for
the direct and adjoint linearized Navier–Stokes equations is available.

Recently, the global stability of the spatially evolving Blasius flow subject to
two-dimensional disturbances has been studied within an optimization framework
by projecting the system onto a low-dimensional subspace consisting of damped
Tollmien–Schlichting (TS) eigenmodes (Ehrenstein & Gallaire 2005). These results
were extended by Åkervik et al. (2008), who found that by not restricting the spanned
space to include only TS modes, the optimally growing structures could exploit both
the Orr and the TS wave packet mechanism and yield a substantially higher energy
growth. The Orr mechanism (Orr 1907) was studied in the context of parallel shear
flows using the Orr–Sommerfeld/Squire (OSS) equations by Butler & Farrell (1992),
who termed it the Reynolds stress mechanism. This instability extracts energy from
the mean shear by transporting momentum down the mean momentum gradient
through the action of the perturbation Reynolds stress. In other words, disturbances
that are tilted against the shear can borrow momentum from the mean flow while
rotating with the shear until they are aligned with it. This mechanism is also referred
to as wall-normal non-normality.

From the local point of view, the TS waves appear as unstable eigenvalues of the
Orr–Sommerfeld equation. In the global framework, however, the global eigenmodes
belonging to the TS branch are damped (Ehrenstein & Gallaire 2005), and the
evolution of TS waves consists of cooperating global modes that produce wave
packets. Considering the model problem provided by the Ginzburg–Landau equation
with spatially varying coefficients, Cossu & Chomaz (1997) demonstrated that the
non-normality of the streamwise eigenmodes resulting from the local convective
instabilities leads to substantial transient growth. This non-normality is revealed by
the streamwise separation of the direct and adjoint global modes induced by the basic
flow advection; it is therefore also termed streamwise non-normality (Chomaz 2005).

It is now well established that when incoming disturbances exceed a certain
amplitude threshold, the flat-plate boundary layer is likely to undergo transition
due to three-dimensional instabilities arising via the lift-up effect (Ellingsen & Palm
1975; Landahl 1980). This transient growth scenario, where streamwise vortices induce
streamwise streaks by the transport of the streamwise momentum of the mean flow,
was studied for a variety of shear flows in the locally parallel assumption (cf. Butler
& Farrell 1992; Reddy & Henningson 1993; Trefethen et al. 1993). The extension
to the non-parallel flat-plate boundary layer was performed at the same time by
Andersson, Berggren & Henningson (1999) and Luchini (2000) by considering the
steady linear boundary-layer equations parabolic in the streamwise direction. In these
investigations, the optimal upstream disturbances are located at the plate leading edge
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and a Reynolds-number-independent growth was found for the evolution of streaks
at large downstream distances. Levin & Henningson (2003) examined variations of
the position at which disturbances are introduced and found the optimal location
to be downstream of the leading edge. In this study, low-frequency perturbations
were also considered, which are still within the boundary-layer approximation. In
the global framework, an interpretation of the lift-up mechanism is presented e.g. by
Marquet et al. (2008): Whereas the TS mechanism is governed by a transport of the
disturbances by the base flow, the lift-up mechanism is governed by a transport of the
base flow by the disturbances. Inherent in the lift-up mechanism is the component-
wise transfer of momentum from the two cross-stream to the streamwise velocity
component (component-wise non-normality).

The standard way of solving the optimization problems involved in the
determination of optimal initial condition (or forcing) is to directly calculate the matrix
norm of the discretized evolution operator (or the pseudo-spectrum of the resolvent)
of the system. In the local approach, in which the evolution is governed by the OSS
equations, it is clearly feasible to directly evaluate the matrix exponential or to invert
the relevant matrix. In the global approach, it is in general difficult, and in some
cases impossible, to build the discretized system matrix. One possible remedy is to
compute a set of global eigenmodes with iterative methods and project the flow
system onto the subspace spanned by these eigenvectors. The optimization is then
performed in a low dimensional model of the flow: results for the flat-plate boundary
layer can be found in Ehrenstein & Gallaire (2005) and Åkervik et al. (2008), whereas
two-dimensional and three-dimensional studies on separated flows were performed by
Åkervik et al. (2007), Gallaire, Marquillie & Ehrenstein (2007), Ehrenstein & Gallaire
(2008), Marquet et al. (2008), Marquet et al. (2009) and Alizard, Cherubini & Robinet
(2009).

However, the direct matrix-free approach followed here is preferable, if not
indispensable, for more complicated flows. This amounts to solving eigenvalue
problems using only direct numerical simulations (DNSs) of the evolution operators.
This approach is commonly referred to as a time-stepper technique (Tuckerman &
Barkley 2000); one of its first applications was to the linear stability analysis of a
spherical Couette flow (Marcus & Tuckerman 1987a ,b; Mamun & Tuckerman 1995).
The time-stepper technique was then generalized to optimal growth calculations by
introducing the adjoint evolution operator and solving the eigenvalue problem of
the composite operator (Blackburn, Barkley & Sherwin 2008; Barkley, Blackburn
& Sherwin 2008) for backward-facing step flow; it was subsequently applied to the
flat-plate boundary-layer flow subject to two-dimensional disturbances of Bagheri
et al. (2009a).

Thus, in this paper we study the stability of the flat-plate boundary-layer flow
subject to three-dimensional disturbances from a global perspective using a time-
stepper technique. The base flow has two inhomogeneous directions, namely the
wall-normal and streamwise, thereby allowing a decoupling of Fourier modes in
the spanwise direction only. Both optimal initial condition and optimal forcing are
therefore first considered for a range of spanwise wavenumbers, seeking to find the
spanwise scale of the most amplified disturbances. In the case of optimal initial
conditions, we optimize over a range of final times, whereas time-periodic optimal
forcing is computed for a range of frequencies. In addition, we compute for the first
time optimal initial conditions localized in space. The evolution of the resulting wave
packet is analysed in terms of flow structures and propagation speed.
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Whereas the computation of optimal initial condition is known in the global time-
stepper context (see references above), the formulation of the optimal forcing problem
in this framework is novel. This enables us to compute the pseudo-spectrum of the
non-normal governing operator with a matrix-free method. The latter type of analysis
can have direct implications for flow control as well: The optimization procedure
allows us to determine the location and frequency of the forcing to which the flow
under consideration is most sensitive.

The paper is organized as follows. Section 2 is devoted to the description of the
base flow and the governing linearized equations. Sections 3 and 4 describe the
Lagrange approach to solving the optimization problems defined by the optimal
initial conditions and optimal forcing, respectively. The main results are presented in
§ 5; the paper ends with a summary of the main findings.

2. Basic steady flow, governing equations and adjoint system
We investigate the stability of the classical spatially evolving two-dimensional

flat-plate boundary-layer flow subject to three-dimensional disturbances. The
computational domain starts at a distance x from the leading edge defined by the
Reynolds number Rex = U∞x/ν =3.38 · 105 or Reδ∗ =1.72

√
Rex = U∞δ∗

0/ν = 103. Here
U∞ is the uniform free stream velocity, δ∗ is the local displacement thickness and ν is
the kinematic viscosity. We denote the displacement thickness at the inflow position
by δ∗

0 . All variables are non-dimensionalized by U∞ and δ∗
0 . We solve the linearized

Navier–Stokes equations using a spectral DNS code described by Chevalier et al.
(2007) on a domain Ω =[0, Lx] × [0, Ly] × [0, Lz]. The non-dimensional height of the
computational box is Ly = 30 and the length is Lx =1000, and the spanwise width is
Lz = 502.6 for the case of localized initial conditions or defined in each simulation by
the Fourier mode under investigation. In the wall-normal direction y, a Chebyshev-
tau technique with ny =101 polynomials is used along with homogeneous Dirichlet
conditions at the wall and the free-stream boundary. In the streamwise and spanwise
directions, we assume periodic behaviour, hence allowing for a Fourier transformation
of all variables. For the simulations presented here, the continuous variables are
approximated by nx = 768 and nz = 128 Fourier modes in the streamwise and spanwise
directions, respectively, whereas we solve for each wavenumber separately in the
spanwise direction when considering spanwise periodic disturbances, a decoupling
justified by the spanwise homogeneity of the base flow. Because the boundary-
layer flow is spatially evolving, a fringe region technique is used to ensure that the
flow is forced back to the laminar inflow profile at x = 0 (Nordström, Nordin &
Henningson 1999). The fringe forcing quenches the incoming perturbations and is
active at the downstream end of the computational domain, x ∈ [800, 1000], so
that x = 800 can be considered as the effective outflow location, corresponding to
Rex = 1.138 × 106. The steady state used in the linearization is obtained by marching
the nonlinear Navier–Stokes equations in time until the norm of the time derivative of
the solution is numerically zero. Thus, the two-dimensional steady state with velocities
U = (U (x, y), V (x, y), 0)T and pressure �(x, y) differs slightly from the well-known
Blasius similarity solution.

2.1. The linearized Navier–Stokes equations

The stability characteristics of the base flow U =(U (x, y), V (x, y), 0)T to
small perturbations u = (u(x, t), v(x, t), w(x, t))T are determined by the linearized
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Navier–Stokes equations

∂t u + (U · ∇) u + (u · ∇) U = −∇π + Re−1Δu + g, (2.1)

∇ · u = 0, (2.2)

subject to initial condition u(x, t = 0) = u0(x). Note that we have included a
divergence-free forcing term g = g(x, t) to enable us to also study the response
to forcing as well as to initial condition. In the expression above, the fringe forcing
term is omitted for simplicity (see Bagheri, Brandt & Henningson 2009b).

When performing a systematic analysis of the linearized Navier–Stokes equations,
we are interested in the initial condition u(0) and in the features of the flow states
u(t) at times t > 0. We will also consider the spatial structure of the time-periodic
forcing g that creates the largest response at large times, that is when all transients
effects have died out. Our analysis will therefore consider flow states induced by
forcing or initial conditions, where a flow state is defined by the three-dimensional
velocity vector field throughout the computational domain Ω at time t . To this end,
it is preferable to rewrite the equations in a more compact form. In order to do
so, we define the velocities as our state variable, i.e. u = (u, v, w)T. Following Kreiss,
Lundbladh & Henningson (1994), the pressure can be formally written in terms of
the velocity field π = Ku, the solution to the equation

Δπ = −∇ · ((U · ∇)u + (u · ∇)U). (2.3)

The resulting state space formulation of (2.1) reads

(∂t − A)u − g = 0, u(0) = u0. (2.4)

Alternatively, A may also be defined using semi-group theory, in which it is referred
to as the infinitesimal generator of the evolution operator T(t) (Trefethen & Embree
2005), where T is defined as the operator that maps a solution at time t0 to time
t0 + t

u(t + t0) = T(t)u(t0). (2.5)

In what follows we use the evolution operator T to study both the response to
initial condition and the regime response to forcing, i.e. we look at the long-term
periodic response. Indeed, for practical numerical calculations, the variables are often
discretized, so that the governing operator becomes a matrix of size n × n, with
n= 3nxnynz for general three-dimensional disturbances. When considering spanwise
periodic disturbances, we can focus on one wavenumber at a time and the dimension of
the system matrix is reduced to n= 3nxny . However, even in this case the evaluation of
the discretized evolution operator T = exp(At) is computationally not feasible. The
complete stability analysis, including the optimization, can be efficiently performed by
marching in time the linearized Navier–Stokes equations using a numerical code. This
so-called time-stepper technique has indeed become increasingly popular in stability
analysis (Tuckerman & Barkley 2000).

2.2. Choice of norm and the adjoint equations

In order to measure the departure from the base flow, we use the kinetic energy of
the perturbations

‖u(t)‖2 = (u(t), u(t)) =

∫
Ω

uH u dΩ. (2.6)

Because the transition in shear flows is initiated by secondary instabilities induced by
local gradients in the flow, one could alternatively use an infinity norm or maximize



186 A. Monokrousos, E.
�

Akervik, L. Brandt and D. S. Henningson

directly the shear or vorticity. Using the above inner product, we may define the
action of the adjoint evolution operator as

(v, exp(At)u) = (exp(A†t)v, u), (2.7)

where A† is defined by the initial value problem

−∂tv = A†v = (U · ∇)v − (∇U)Tv + Re−1Δv + ∇Zv, v(T ) = vT . (2.8)

The adjoint system (2.8) is derived using the inner product in time space domain
Σ = [0, T ] × Ω . The operator Z is the counterpart of the operator K for the
adjoint pressure: σ = Zv. This initial value problem has a stable integration direction
backwards in time, so we may define the adjoint solution at time T − t for the forward
running time t as

v(T − t) = exp(A†t)vT , t ∈ [0, T ]. (2.9)

It is important to note that the addition of the forcing term g in (2.1) has no effect
on the derivation of the adjoint equations. In particular, the fringe forcing term is
self-adjoint because it is proportional to the velocity u.

3. Optimal initial conditions
In this section, we derive the system whose solution yields initial conditions that

optimally excite flow disturbances. When seeking the optimal initial condition, we
assume that the forcing term g in (2.4) is zero. We wish to determine the unit
norm initial condition u(0) yielding the maximum possible energy (u(T ), u(T )) at a
prescribed time T . A common way of obtaining the optimal initial condition is to
recognize that the condition

G(t) = max
‖u(0)‖�=0

‖u(T )‖2

‖u(0)‖2
= max

‖u(0)‖�=0

(u(0), exp(A†T ) exp(AT )u(0))

(u(0), u(0))
(3.1)

defines the Rayleigh quotient of the composite operator exp(A†T ) exp(AT ). The
optimization problem to be solved is hence the eigenvalue problem

γ u(0) = exp(A†T ) exp(AT )u(0). (3.2)

In the case of a large system matrix, as in fluid-flow systems, this eigenvalue problem
can be efficiently solved by matrix-free methods using a time-stepper (DNS) and
performing power iterations or the more advanced Arnoldi method (cf. Nayar &
Ortega 1993; Lehoucq, Sorensen & Yang 1997); both methods only need a random
initial guess for u(0) and a numerical solver to determine the action of exp(AT ) and
exp(A†T ) (Barkley et al. 2008).

One alternative approach relies on the Lagrange multiplier technique, which we
believe allows for more flexibility in defining different objective functions as well as in
enforcing additional constrains. Here, we show how this approach is used to compute
the unit norm initial condition u(0) non-zero only within a fixed region in space,
Λ ⊂ Ω , i.e. the localized optimal initial condition. The objective is still maximizing
the kinetic energy at final time T

J = (u(T ), u(T )). (3.3)

The following constraints need to be enforced: the flow needs to satisfy the governing
linearized Navier–Stokes equations (2.4) (without forcing) and the initial condition
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must have unit norm and exist only inside Λ. Additionally, the optimal perturbation
must be divergence-free. Hence, the Lagrange function reads

L(u, v, γ ) = (u(T ), u(T )) −
∫ T

0

(v, (∂t − A) u) dτ

− γ ((u(0), u(0))Λ − 1) − (ψ, ∇ · u(0))Λ, (3.4)

where v, γ and ψ are the Lagrange multipliers. The inner product defined by (·, ·)Λ
corresponds to an integral in Λ. Note that the normalization condition selects a
unique solution to the eigenvalue problem and thus enables the numerical procedure
to converge. We need to determine u, u(0), u(T ), v and γ such that L is stationary, a
necessary condition for first-order optimality. This can be achieved by requiring that
the variation of L is zero,

δL =

(
∂L
∂u

, δu
)

+

(
∂L
∂v

, δv

)
+

(
∂L
∂γ

)
δγ +

(
∂L
∂ψ

)
δψ = 0. (3.5)

This is only fulfilled when all terms are zero simultaneously. The variation with respect
to the costate variable (or adjoint state variable) yields directly the state equation

(∂t − A)u = 0, (3.6)

and similarly the variation with respect to multiplier γ yields a normalization criterion(
∂L
∂γ

, δγ

)
⇒ (u(0), u(0))Λ = 1. (3.7)

In order to take the variations with respect to the other variables, we perform
integration by parts on the second term of L in (3.4) to obtain

L = (u(T ), u(T )) −
∫ T

0

(
u, (−∂t − A†) v) dτ − (v(T ), u(T ))

+ (v(0), u(0)) − γ ((u(0), u(0))Λ − 1) − (ψ, ∇ · u(0))Λ. (3.8)

The variation of this expression with respect to the state variable u yields an equation
for the adjoint variable as well as two optimality conditions(

∂L
∂u

, δu
)

⇒ −
∫ T

0

(δu, (−∂t − A†)v) + (δu, v − γ u)|t=0 + (δu, u − v)|t=T = 0. (3.9)

The simplest choice to satisfy this condition is that each of these terms is zero
separately

(−∂t − A†)v = 0, (3.10)

and

u(0) = γ −1v(0),

v(T ) = u(T ).

}
(3.11)

Variations with respect to the initial velocity field give the following condition:

(δu(0), v(0)) − γ (δu(0), u(0))Λ − (δu(0), ∇ψ)Λ = 0. (3.12)

The above expression can be rewritten in integral form∫
Ω−Λ

(δu(0)Tv(0)) +

∫
Λ

δu(0)T(v(0) − γ u(0) − ∇ψ) = 0. (3.13)
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The first integral is zero for δu(0) = 0, which implies that the initial condition is not
updated outside Λ. Therefore, the new guess for the localized initial condition u(0) is

u(0) = γ −1(v(0) − ∇ψ)|Λ. (3.14)

In the above, the scalar field ψ is obtained by combining (3.14) with

∂L
∂ψ

= ∇ · u(0) = 0. (3.15)

This gives a projection to a divergence-free space where the pressure-like scalar field ψ

is solution to a Poisson equation. It can be proved that this is a unique projection. In
our numerical implementation, the projection is actually performed by transforming
in the velocity–vorticity formulation adopted for the computations (Chevalier et al.
2007).

The procedure described above solves an eigenvalue problem similar to (3.2) with
the addition of an operator PC that localizes in space and projects to a divergence-free
space

γ u(0) = PC exp(A†T ) exp(AT )u(0). (3.16)

The optimality system to be solved is hence composed of (3.6), (3.7), (3.10) and
(3.11) along with the projection to divergence-free space (3.14). From (3.7) and the
first relation in (3.11), it can be readily seen that γ = (v(0), v(0)). The remaining
equations are solved iteratively as follows.

Starting with an initial guess u(0)n:
(i) we integrate (3.6) forward in time and obtain u(T );
(ii) v(T ) = u(T ) is used as an initial condition at t = T for the adjoint system (3.10),

which if integrated backward in time gives v(0);
(iii) we determine a new initial guess by localizing v(0), casting it to a divergence-

free space and normalizing it to unit norm, u(0) = γ −1(v(0) − ∇ψ)|Λ;
(iv) if |u(0)n+1 − u(0)n| is larger than a given tolerance, the procedure is repeated.
Before convergence is obtained, u(0) and v(0) are not aligned. At convergence, u(0)

is an eigenfunction of (3.16). The iteration scheme above can be seen as a power
iteration scheme finding the largest eigenvalue of the problem (3.16). Because the
composite operator is symmetric, its eigenvalues are real and its eigenvectors form
an orthogonal basis. The eigenvalues of the system rank the set of optimal initial
conditions according to the output energy at time T . If several optimals are sought,
e.g. to build a reduced order model of the flow, the sequence of u(0)n produced in the
iteration can be used to build a Krylov subspace suitable for the Arnoldi method.

4. Optimal forcing
This section focuses on the regime response of the system to time-periodic forcing.

Thus, we assume zero initial conditions, u(0) = 0, and periodic behaviour of the
forcing function, i.e.

g = � ( f (x) exp(iωt)) , f ∈ �, ω ∈ �, (4.1)

where f defines the spatial structure of the forcing, ω is its circular frequency and �
denotes the real part. With these assumptions, the governing equations become

(∂t − A)u − � ( f exp(iωt)) = 0, u(0) = 0. (4.2)

In this case, we wish to determine the spatial structure and relative strength of the
components of the forcing f that maximize the response of the flow at the frequency
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ω in the limit of large times, i.e. the regime response of the flow. The measure of the
optimum is also based on the energy norm. Note that for this method to converge
and for the regime response to be observed, the operator A must be globally stable.
In the spatial framework, this requirement is always satisfied.

In order to formulate the optimization problem, it is convenient to work in the
frequency domain, thereby removing the time dependence. By assuming time-periodic
behaviour, u is replaced by the complex field ũ so that

u = � (ũ exp(iωt)) . (4.3)

The resulting governing equations can then be written as

(iωI − A)ũ − f = 0. (4.4)

Note that the operator A, containing only spatial derivatives, remains unchanged.
The Lagrange function for the present optimization problem is similar in structure to
that used to determine the optimal initial condition and is formulated as follows:

L(ũ, ṽ, γ, f ) = (ũ, ũ) − (ṽ, (iωI − A)ũ − f ) − γ (( f , f ) − 1) . (4.5)

The objective function is the disturbance kinetic energy of the regime response (ũ, ũ),
where the complex variable ũ requires the use of the Hermitian transpose. The
additional constrains require the flow to be the solution to the linearized forced
Navier–Stokes equations and introduce a normalization condition for the forcing
amplitude. Because the state variable ũ is a solution to the time-independent system
(4.4), the inner product used in the definition of the adjoint involves only spatial
integrals. The time behaviour of the costate or adjoint variable is also assumed to be
periodic v = �(ṽ exp(iωt)). Thus, in the derivation of the adjoint, the time derivative
is replaced by the term iωũ, with adjoint −iωṽ. As for the computation of the optimal
initial condition, we take variations with respect to ũ, ṽ, f and γ :

δL =

(
∂L
∂ ũ

, δũ
)

+

(
∂L
∂ ṽ

, δṽ

)
+

(
∂L
∂ f

, δ f
)

+

(
∂L
∂γ

)
δγ. (4.6)

The first-order optimality condition requires all of the terms to be simultaneously
zero. By taking variations with respect to the costate variable (or adjoint variable),
we again obtain the state equation (4.4). Similarly, the variation with respect to the
multiplier γ yields the normalization criterion ( f , f ) − 1 =0. In order to take the
variations with respect to the other variables, we perform integration by parts on
the second term of L in (4.5) to obtain

L(ũ, ṽ, γ, f ) = (ũ, ũ) − (ũ, (−iωI − A†)ṽ) + ( f , ṽ) − γ (( f , f ) − 1) . (4.7)

No initial–final condition terms appear during this integration by parts because here
the inner product is only in space (in contrast to the optimal initial condition).
Variations with respect to the state variable ũ and to the forcing function f yield(

∂L
∂ ũ

)
⇒ ũ − (−iωI − A†)ṽ = 0, (4.8)

(
∂L
∂ f

)
⇒ f = γ −1ṽ. (4.9)

Equations (4.4) and (4.8) are the two equations that we have to solve with the
time-stepper. The normalization condition ( f , f ) = 1 and (4.9) provide the optimality
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condition that is used to calculate the new forcing field after each iteration of the
optimization loop.

Below, we show the equivalence between the Lagrange multiplier technique and the
corresponding standard matrix method when the resolvent norm is considered. The
formal solution to (4.2) can be written as

ũ = (iωI − A)−1 f . (4.10)

The corresponding solution for the adjoint system is

ṽ = (−iωI − A†)−1ũ. (4.11)

Combining the two equations above and using (4.9),

f =
1

γ
(−iωI − A†)−1(iωI − A)−1 f . (4.12)

This is a new eigenvalue problem defining the spatial structure of the optimal forcing
at frequency ω that is solved iteratively; the largest eigenvalue corresponds to the
square of the resolvent norm

γ = ‖(iωI − A)−1‖2. (4.13)

Note that the actual implementation uses a slightly different formulation because
the available time-stepper does not solve directly (4.4) and (4.8). In practice, the
governing equations are integrated in time long enough that the transient behaviour
related to the system operator A has died out. The regime response for the direct
and adjoint system is extracted by performing a Fourier transform of the velocity
field during one period of the forcing.

The steps of the optimization algorithm therefore are the follows:
(i) Integrate (4.2) forward in time and obtain the Fourier transform response ũ at

the frequency of the forcing.
(ii) Here ũ is used as a forcing for the adjoint system.
(iii) A new forcing function is determined by normalizing f n+1 = ṽ/γ .
(iv) If | f n+1 − f n| is larger than a given tolerance, the procedure is repeated.
We will also study localized optimal forcing; see § 5.2.2. The derivation of the

optimality conditions is similar to that presented for spatially localized perturbations
in § 3 and are not reported here.

A validation of the method is presented in figure 1, where the results from the
present adjoint-based iteration procedure are compared with those obtained by the
standard method of performing a singular value decomposition (SVD) of the resolvent
of the Orr–Sommerfeld and Squire equations for the parallel Blasius flow (cf. Schmid
& Henningson 2001). In figure 1(a), the response to forcing with spanwise wavenumber
β = 0 is shown for different frequencies, whereas the response to steady forcing with
streamwise wavenumber α is shown in figure 1(b). In the latter case, variations of the
spanwise wavenumbers are considered. In both cases, excellent agreement between
the two methods is observed.

5. Results
The flat-plate boundary-layer flow is globally stable, i.e. there are no eigenvalues

of A located in the unstable half-plane. Hence, we do not expect to observe the
evolution of single eigenmodes. In Åkervik et al. (2008), the non-modal stability of
this flow subject to two-dimensional disturbances was studied by considering the
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Figure 1. Comparison of results from the adjoint iteration scheme (circles) and direct solution
in terms of SVD of the OSS resolvent (solid lines) for optimal forcing to the parallel Blasius flow
at Re = 1000. (a) Zero spanwise wavenumber β for different frequencies ω and for streamwise
wavenumber α = 0.1. (b) Streamwise wavenumber α = 0.1 for different spanwise wavenumbers
β subject to forcing with frequency ω = 0.05. Both plots show excellent agreement between
the two methods. Note that in order to obtain a regime response in the parallel case, the
wavenumbers are chosen so that the system operator is stable.

optimal superposition of eigenmodes. These authors found that the optimal initial
condition exploits the well-known Orr mechanism to efficiently trigger the propagating
TS wave packet. In Bagheri et al. (2009a), the stability of the same flow was studied
using forward and adjoint iteration scheme together with the Arnoldi method to
reproduce the same mechanism. By allowing for three-dimensional disturbances, it is
expected that in addition to the instability mechanisms mentioned above (convective
TS instability and the Reynolds stress mechanism of Orr), the lift-up mechanism will
be relevant in the system.

This has been well understood both using the OSS equations (Butler & Farrell
1992; Reddy & Henningson 1993) in the parallel temporal framework and using
the parabolized stability equations in the spatial non-parallel framework (Andersson
et al. 1999; Luchini 2000; Levin & Henningson 2003). In the former formulation,
the base flow is assumed to be parallel. At the Reynolds number Re = 1000, the
inflow Reynolds number of the present investigation, it is found that for spanwise
wavenumbers β larger than ≈ 0.3, there is no exponential instability of TS/oblique
waves. The largest non-modal growth due to the lift-up mechanism is observed at
the wavenumber pair (α, β) = (0, 0.7). In this work, we do not restrict ourselves to
zero streamwise wavenumber α = 0, but instead take into account the developing base
flow. Indeed, the spatially developing base flow allows for transfer of energy between
different wavenumbers through the convective terms.

5.1. Optimal initial condition

5.1.1. Spanwise periodic flows

We investigate the potential for growth of initial conditions with different spanwise
wavenumbers β by solving the eigenvalue problem (3.2) for a range of instances of
time T . As explained above, this amounts to performing a series of direct and adjoint
numerical simulations until convergence towards the largest eigenvalues of (3.2) is
obtained.

Figure 2(a) shows the energy evolution when optimizing for different times and
spanwise wavenumber β = 0.55. It is at this wavenumber that the maximum growth



192 A. Monokrousos, E.
�

Akervik, L. Brandt and D. S. Henningson

0 500 1000 1500 2000
100

102

104

t t

E

0 200 400 600
10–1

100

101

102

r.
m

.s

urms

vrms

wrms

(a) (b)

Figure 2. (a) Energy evolution of the optimal initial conditions for different times T at the
wavenumber β =0.55, where the optimal streak growth is obtained. The largest growth is
obtained at time T = 720. The maximum at each time in this figure defines the envelope
growth. (b) Component-wise r.m.s. values when optimizing for time T = 720. A transfer of
energy from the wall-normal and spanwise component to the streamwise velocity is observed
during the time evolution, clearly showing that the lift-up mechanism is active.

due to the lift-up mechanism is found for the configuration under consideration. From
figure 2(b) it is evident that the disturbance leading to the maximum streak growth
at time T = 720 exploits the component-wise transfer between velocity components
inherent to the lift-up mechanism. The initial condition is in fact characterized by
strong wall-normal v and spanwise w perturbation velocity while the flow at later
times is perturbed in its streamwise velocity component.

An important feature of this high-Reynolds-number flat-plate boundary-layer flow
with length Lx = 800 is that the combined Orr/Tollmien–Schlichting mechanism is
very strong with a growth potential of γ1 = 2.35 × 104 (see also Bagheri et al. 2009a)
for time T = 1800. If, however, the streaks induced by the lift-up mechanism have
reached sufficiently large amplitudes to trigger significant nonlinear effects, the TS
wave transition scenario will be bypassed. In figure 3, a contour map of the maximum
growth versus optimization time and spanwise wavenumbers β is shown. Note that
local maxima are obtained in two regions: (i) a low spanwise wavenumber regime
dominated by the TS/oblique waves where the growth is the largest but slow and
(ii) for high spanwise wavenumber, it is the fast lift-up mechanism that is dominating.
The TS/oblique mechanism can be seen to yield one order of magnitude larger
growth than the lift-up instability. The global maximum growth is obtained at the
wavenumber β = 0.05 and not for β = 0. This somewhat surprising result can be
explained by the larger initial transient growth of spanwise-dependent perturbations
which initiates the TS-waves. The growth rate of TS-waves is almost independent of
β for the low values under consideration (see e.g. figure 3.10 of Schmid & Henningson
2001).

The competition between the exponential and algebraic growth was also studied
using local theory by Corbett & Bottaro (2000). These authors have shown that
as the Reynolds number increases, the growth due to modal instability becomes
more pronounced. The results presented in that work for Reθ = 386 (equivalent
to Reδ∗ = 1000 in our scaling) indicate that TS instability becomes dominant for
final times T > 2000. Our results show that in a spatially evolving boundary layer
with local Reynolds number Reδ∗ ranging between 1000 and 1800, the exponential
growth dominates at times larger than about 1250. In the following, we study in
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Figure 3. Contour map of optimal growth due to initial condition in the time spanwise
wavenumber domain. The contour levels span three orders of magnitude and thus we use
a logarithmic scale. The values on the contours indicate the energy growth corresponding
to that line. The maximum streak growth is obtained for β = 0.55 at time T =720 and the
amplification factor is G = 2.63 × 103. The global maximum is obtained for β =0.05 at time
T = 1820, with the streamwise exponential amplification of oblique waves combined with the
Orr mechanism. The amplification factor is G = 2.71 × 104.

more detail the disturbances corresponding to the two local maxima mentioned
above.

The evolution of the most dangerous initial condition is shown in figure 4.
The streamwise velocity component of the optimal initial condition leading to the
maximum growth at time T = 1820 is depicted together with the flow response at
various times. The initial disturbance is the same as in the two-dimensional case
leaning against the shear of the base flow (see figure 4a). The resulting instability
exploits the Orr mechanism to efficiently initialize the wave packet propagation,
eventually giving the disturbance shown in figure 4(b–d ).

Figure 5 shows the space–time diagram for the evolution of the three velocity
components of the disturbance. Isocontours of the integrated, in the spanwise
and wall-normal directions, root-mean-square (r.m.s.) values associated with each
component are plotted versus the streamwise direction and time. Because this is
a global view of local modal instability, there is no significant component-wise
transfer of energy, and thus the different components of the disturbance evolve
(grow) in a similar manner. Weak interactions between the components can be due
to non-parallel effects. Additionally, the propagation velocity of the disturbance is
estimated from the space–time diagrams by tracking the edges of the disturbance.
These edges are defined as the point where the r.m.s. values have amplitude 1 %
of the local peak value. (All the propagation velocities presented will be measured
in this way.) The leading edge of the wave packet travels at cle = 0.51 whereas
the trailing edge has a velocity cte = 0.33. These values show remarkable agreement
with the classic results on the propagation of wave packets by Gaster (1975) and
Gaster & Grant (1975).
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Figure 4. Isosurfaces of streamwise component of disturbances at the spanwise wavenumber
β =0.05. Red/blue colour signifies isosurfaces corresponding to positive/negative velocities
at 10% of the maximum. (a) Streamwise component of optimal initial condition leading to
the global optimal growth at time T = 1820. (b–d ) Corresponding flow responses at times
T = 400, 1000 and 1600.

The optimal initial condition leading to the maximum growth at time T = 720 for
spanwise wavenumber β = 0.55 and the corresponding flow response at various times
are shown in figure 6. The initial disturbance is an elongated perturbation with most of
its energy (99.94 %) in the wall-normal and spanwise velocity components (figure 6a).
The resulting instability exploits the lift-up eventually giving the disturbance shown
in figure 6(b–e). This is a result of local non-modal instability characterized by the
strong transfer of energy from the wall-normal and spanwise towards the streamwise
velocity component. The wall-normal velocity component is shown in figure 6(b) to
suggest that the Orr mechanism is active here as well; it delays the final decay of the
streamwise vortices so that they can induce streaks more effectively. Already at time
t = 100 more than 99 % of the kinetic energy of the perturbation is in the streamwise
component. As can be seen, the disturbance evolves into alternating slow and fast
moving streaks that are tilted so that the leading edge is higher than the trailing edge
as observed in the experimental investigation by Lundell & Alfredsson (2004).

Note that although the optimal initial condition is streamwise independent for
parallel flows, it is localized in the streamwise direction for a spatially growing
boundary layer. This indicates that it is most efficient to extract energy from the
mean flow farther upstream where non-parallel effects are stronger. For optimization
times longer than that of the peak value, still with β = 0.55, the initial perturbation
is located farther upstream and is shorter. This is to compensate for the downstream
propagation of perturbations out of the control domain. Conversely, for optimization
times lower than T = 720, the initial conditions assume more and more the form of a
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Figure 5. Spatio-temporal diagram of the three velocity components of the perturbation for
the TS-wave case (optimization time is T = 720) (a streamwise, b wall normal and c spanwise).
The propagation velocity of the leading edge of the disturbance is cle = 0.51 whereas that of the
trailing edge is cte = 0.33.

packet of vortices aligned in the streamwise direction and tilted upstream. The growth
is then due to a combined Orr and lift-up mechanism.

The space–time diagram for each velocity component of the streaky optimal
perturbation is presented in figure 7. The non-modal nature of the instability and the
component-wise transfer of energy are seen in the plots. The streamwise component
is for large times several orders of magnitude larger than that for the other two. The
propagation velocity of the disturbance is calculated: the leading-edge velocity of the
‘streak-packet’ is cle = 0.87 whereas the trailing edge travels at velocity cte =0.44. Note
that these values are based on the streamwise velocity component. The propagation
velocities of the non-modal streaks are larger than those of modal disturbances. This
can be explained by the fact that the disturbances are located in the upper part
of the boundary layer, especially in the downstream part, as also deduced from the
three-dimensional visualization in figure 6. Note, finally, in the plot for the spanwise
velocity component a kink around t = 400 and x =400. In this region, the main
contribution to the trailing edge of the disturbance changes from streamwise vortices
to streamwise streaks. The propagation velocity of streamwise vortices is thus larger
than that of the streaks as confirmed by the reduced slope of the peak contours in
figures 7(a) and 7(b).

To further interpret the present results, we perform a Fourier transform along the
streamwise direction of the two disturbances investigated above and compute the
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Figure 6. Evolution of streamwise velocity when initializing the system with the optimal
initial condition at β = 0.55. (a) The wall-normal velocity of the optimal initial condition.
(b) The wall-normal velocity at t = 200 with surface levels at 10 % of its maximum value.
(c) The streamwise velocities at t = 200, (d ) t = 400 and (e) t = 600. The optimization time is
T = 720.

energy distribution in the various streamwise wavenumbers α (the energy density
is first integrated in the wall-normal and spanwise directions). The result shown
in figure 8 demonstrates that the TS-wave disturbance has a peak at a relatively
higher α ≈ 0.17, a value in agreement with predictions from local parallel stability
calculations. The streak mode, conversely, has most of its energy at the lowest
wavenumbers.

Four different optimal initial conditions for β = 0.55 and T = 720 are shown in
figure 9. The wall-normal velocity component of the eigenvector leading to the
maximum growth is reported in 9(a). Because the base flow is uniform in the
spanwise direction, the second eigenvector has the exact same shape as the first,
only shifted half a wavelength in z as shown in figure 9(b). These eigenvectors
correspond to the same eigenvalue γ1,2 = 2.6 × 103, and they may be combined linearly
to obtain a disturbance located at any spanwise position. In figure 9(c,d ), the third
eigenvector associated with γ3 = 2.2 × 103 and the fifth eigenvector associated with
γ5 = 1.6 × 103 are shown, respectively. These eigenvectors also come in pairs with
matching eigenvalues. It is thus possible by the Arnoldi method to obtain several
optimals for a single parameter combination. This has not been done previously for
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Figure 7. Spatio-temporal diagram of the three velocity components of the perturbation for
the streak case (optimization time is T = 720) (a streamwise, b wall normal and c spanwise).
The propagation velocity of the leading edge of the disturbance is cle = 0.87 whereas that of the
trailing edge is cte = 0.44. The two speeds are measured in the second half of the time domain
after the initial transient phase.
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Figure 8. Energy spectra along the streamwise direction for the optimal initial condition at
T = 1820, β = 0.05 (TS-wave) and T = 720, β =0.55 (streak).

the Blasius flow, although Blackburn et al. (2008) computed several optimals for the
flow past a backward-facing step.

The responses to each of these initial conditions are shown in figure 9(e–i ). One can
see that the sub-optimal initial conditions reproduce structures of shorter extension
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Figure 10. The evolution of the energy of the perturbation in time for each of the initial
conditions in figure 9. The sub-optimals denoted by even number give the same evolution as
the corresponding perturbation with odd number.

and with low- and high-speed streaks alternating in the streamwise direction. Figure 10
shows the energy evolution versus time for each of the sub-optimals. The energy
growth is similar in the beginning; however, later on, faster decay is observed with
decreasing order of optimality. Optimal perturbations form an orthogonal basis; this
fact may be exploited to project incoming disturbances and predict their evolution.

5.1.2. Localized optimal initial condition

In this section, we look into the general case of three-dimensional initial disturbances
using the method described in § 3. A large domain is chosen to allow for a fully
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Time Component Initial condition Response Total growth

u 0.00398 275.42913
720 v 0.36452 0.02334 275.76202

w 0.63149 0.30954

u 0.74441 1012.39550
1820 v 0.00314 278.58122 1763.75695

w 0.25244 472.78022

Table 1. Energy of each component of the tree-dimensional optimal initial condition and the
corresponding response. The total energy amplification is reported in the last column. All the
values are normalized with the total energy of the initial condition.

three-dimensional disturbance to propagate and expand in all directions without
interacting with the boundaries. The spanwise width is chosen to be Lz =502.6
(corresponding to the fundamental wavenumber β = 0.0125) for the cases with longest
optimization time and Lz = 251.3 (β = 0.025) for the shorter optimization times.
Furthermore, nz = 128 Fourier modes were used in the spanwise direction, instead of
four for the spanwise periodic cases. This increases the total number of degrees of
freedom in our optimization problem from approximately 1–30 million.

The initial condition is placed near the inflow of the computational domain and
power iterations are used to compute the optimal shape of the disturbance inside
a fixed region. The area to which the initial condition is limited is 30δ∗

0 long and
40δ∗

0 wide and it is centred around the location x =25δ∗
0 and z = 0. Along the wall-

normal direction the optimization process restricts the perturbation near the wall,
inside the boundary layer, hence no additional localization is adopted. The cases
presented here correspond to the two physical mechanisms found to be relevant in
the previous section: the Orr/TS-wave scenario and the lift-up process. To excite the
two separately, the corresponding optimization times are chosen to be T =1820 and
T =720. In addition, one intermediate case, T = 900, where both these mechanisms
are active, is presented.

For the longest optimization time considered (see figure 11), the TS-wave scenario
completely dominates the dynamics. The characteristic upstream tilted structures are
present in the initial condition and all the velocity components achieve a significant
growth. The wave packet grows while travelling downstream and it consists of
structures almost aligned in the spanwise direction, forming symmetric arches. The
three-dimensional nature of this wave packet is noticeable in the spanwise velocity
component of the response, accounting for the spreading of the disturbance normal
to the propagation direction and to the presence of unstable oblique waves. As
in the case of the spanwise periodic disturbances, the total energy growth due to
the streamwise normality (TS-waves for T = 1820) is about of one order magnitude
larger than the amplification triggered by the lift-up effect at T = 720 (component-
wise non-normality). Table 1 compiles the energy amplifications for the cases under
investigation and reports the value of the energy content in each velocity component
for the initial and final conditions.

The flow structures shown in figure 12, with corresponding amplitudes in table 1,
document the optimal initial conditions for T = 720. The lift-up effect with the
formation of streamwise elongated streaks is evident in this case. The initial
condition is characterized by strong streamwise vorticity, wall-normal and spanwise
velocity components, whereas the response is predominantly in the streamwise
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Figure 11. Optimal localized initial condition and corresponding response at time T = 1820,
the optimal TS wave packet. The amplitudes of each velocity component are reported in
table 1.

velocity component. Interestingly, we note weak TS-waves propagating behind the
streaks (visible in the wall-normal and spanwise velocity components). Because the
optimization time is short, TS-waves will not have the opportunity to grow and their
contribution to the initial condition is therefore limited. However, this cannot be
zero for a localized initial perturbation. Note further that the spanwise component
is found to be weak and hence the spreading of the disturbance in this direction is
limited.

The characteristics of the optimal wave packets are analysed by the space–time
diagrams in figures 13 and 14. Here, the propagation of the disturbance in the
streamwise direction is determined by considering the integral of the energy associated
with each velocity component in the wall-normal and spanwise directions. Similarly,
the lateral spreading is computed by integrating the perturbation velocities in the
streamwise and wall-normal directions. Comparing the two cases we see that the TS
wave packet expands faster in the spanwise direction while travelling downstream
more slowly than the optimal streaky wave packet. The propagation velocity of the
leading edge of the TS-like disturbance is cle = 0.47 whereas the trailing edge travels
at cte = 0.32. The spanwise spreading speed is cz =0.084, corresponding to an angle of
θ = 11.46◦. These values can be compared to those observed experimentally by Gaster
(1975) and Gaster & Grant (1975) and to the theoretical analysis of Koch (2002).
Koch (2002) determined the propagation speed of the leading edge of a localized wave
packet to be 0.5 and the trailing-edge velocity to be 0.36 by computing the group
velocity of three-dimensional neutral waves. The largest spanwise group velocity was
found to be approximately 0.085, a value very close to those reported here. The
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Figure 12. Optimal localized initial condition and corresponding response at time T = 720,
the optimal streaky wave packet. The amplitudes of each velocity component are reported in
table 1.

agreement is remarkable even though the results of Koch (2002) are obtained at a
lower Reynolds number, i.e. Re = 580.

The difference between leading and trailing edges of the optimal streaky wave
packet, cle = 0.90 and cte = 0.36, explains the larger extension of the latter; although
the front travels at the speeds typical of the upper part of the boundary layer where the
streaks are located, the trailing edge velocity is that of the unstable waves seen on the
rear. The spanwise spreading speed is cz =0.0098, corresponding to an angle of
θ =0.89◦. This spreading rate is that of the energetically dominant velocity component,
i.e. the streamwise component. The slow lateral diffusion is most likely only due to
the effect of viscosity; the growing streaky structures are therefore characterized by
zero spanwise propagation velocity.

Figures 14(b) and 14(c) clearly demonstrate the short and slower packet of waves
following the main streaky structures. As mentioned above, the spanwise propagation
of the streamwise vortices and streaks is limited; conversely, the sequence of waves
on the rear part of the wave packet has a spanwise spreading rate comparable to that
of the TS wave packet, in particular the value cz =0.073 is obtained by considering
the energy of the spanwise velocity component.

Finally, we computed optimal disturbances for intermediate optimization times
when amplifications are generally lower than those in the two previous cases. For
times around T = 800 to T =900 perturbations containing both streaky and wavy
structures emerge. The spectrum of the initial conditions contains a broad range of
disturbances, whereas the flow response is again characterized by short-wavelength
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Figure 13. Spatio-temporal diagram of the integrated in the wall-normal direction of the
r.m.s. values of three velocity components of the perturbation for the optimal TS wave-packet
(optimization time T = 1820). (a–c) The spreading of the disturbance in the streamwise direction
where the disturbance velocity is integrated in the spanwise and wall-normal directions: (a)
streamwise, (b) wall-normal and (c) spanwise velocity components, respectively. (d–f ) The
evolution in the spanwise direction of the perturbations integrated in the streamwise and
wall-normal directions. The propagation velocity of the leading edge of the disturbance is
cle = 0.47 whereas that of the trailing edge is cte = 0.32. The spanwise spreading speed at
sufficiently large times is cz = 0.084.

instability waves following elongated streaks. The TS wave packet becomes more and
more relevant as the optimization time increases.

5.2. Optimal forcing

5.2.1. Global forcing

Because boundary layers are convectively unstable, thereby acting as noise
amplifiers, a prominent role is played by the response to forcing, rather than by
the time evolution of the initial condition. The optimal forcing is therefore a relevant
measure of the maximum possible growth that may be observed in the computational
domain. Analysis of the frequency response can also have implications for control
revealing the forcing location and frequencies to which the flow is most sensitive.
Although the evolution of the optimal initial condition consists of the propagation



Optimal disturbances in the Blasius boundary-layer flow 203

100

200

300

400

500

600

700

100

200

300

400

500

600

700

100

200

300

400

500

600

700

t

0 200 400
x

600 800 0 200 400
x

600 800 0 200 400
x

600 800

u v w

u v w

(a) (b) (c)

100

200

300

400

500

600

700

100

200

300

400

500

600

700

100

200

300

400

500

600

700

t

(d) (e) (f)

–100 –50 0 50 100
z

–100 –50 0 50 100
z

–100 –50 0 50 100
z

Figure 14. Spatio-temporal diagram of the integrated in the wall-normal direction of the r.m.s.
values of three velocity components of the perturbation for the optimal streaky wave packet
(optimization time T = 720). (a–c) The propagation of the disturbance in the streamwise dir-
ection where the disturbance velocity is integrated in the spanwise and wall-normal directions:
(a) streamwise, (b) wall-normal and (c) spanwise velocity components, respectively. (d–f )
The evolution in the spanwise direction of the perturbations integrated in the streamwise
and wall-normal directions. The propagation velocity of the leading edge of the disturbance
is cle = 0.90 whereas that of the trailing edge is cte = 0.36. The spanwise spreading speed is
cz = 0.0098 (based on the u component).

and amplification of a wave packet, eventually leaving the computational box (or
measurement section), the response of the flow to periodic forcing will consist of
structures with a fixed amplitude at each streamwise station, oscillating around the
mean flow. We investigate the structure of the optimal forcing and the corresponding
response for a range of spanwise wavenumbers and frequencies. Thus, for each
wavenumber we examine a number of temporal frequencies. Ideally, we would like
to solve the linearized Navier–Stokes equations for very large times, ensuring that
we are only considering the regime (long-time) response at the specific frequency
under investigation. In practice, however, we are restricted to a finite final time by
the computational cost of solving the direct and adjoint equations involved in the
iteration scheme. Using power iterations to find the largest eigenpair typically requires
from approximately 15 iterations to about 100 for the most stable frequencies; in
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Figure 15. (a) Frequency response for zero spanwise wavenumber i.e. two-dimensional
disturbances. The optimal response is obtained for the frequency ω =0.055. (b) Response
to zero frequency forcing ω = 0 for different spanwise wavenumbers. The maximum response is
obtained at β =0.6.

other words, we need to integrate the governing equations at least 30 times. As can
be deduced from the results in the previous section, transiently growing perturbations
of small spanwise scale leave our domain at time t ≈ 2000, while locally unstable
TS-waves propagate at a speed of about 0.3 U∞. This observation, along with several
convergence tests using different integration intervals to extract the flow regime
response, leads to the conclusion that integration to T = 5000 is long enough to
observe the pure frequency response.

Figure 15 shows the square of the resolvent norm, i.e. the response to forcing for the
two limiting cases β = 0 and ω = 0. In figure 15(a), the response to two-dimensional
forcing, inducing perturbations with β = 0, is displayed. The maximum response is
observed for the frequency ω = 0.055. This maximum is obtained at the frequency
where the least stable TS eigenvalue is located (see Bagheri et al. 2009a). Indeed, it
is known that by projecting the dynamics of the flow onto the basis of eigenmodes,
the response to forcing is given by the combination of resonant effects (distance
in the complex plane from forcing frequency to eigenvalue) and non-modal effects,
i.e. the cooperating non-orthogonal eigenvectors (Schmid & Henningson 2001). In
Åkervik et al. (2008) it was shown for a similar flow that non-normal eigenvectors
could induce a response about 20 times larger than that induced only by resonant
effects.

The response to zero temporal frequency for different spanwise wavenumbers β

is shown in figure 15(b), where according to local theory the maximum response is
expected for spanwise periodic excitations. The maximum growth may be observed
for the wavenumber β =0.6, a slightly larger value than that for the optimal initial
condition case. Note that in the case of optimal forcing there is a smaller difference
in the maximum gain between the two different dominating mechanisms (TS-waves
versus streaks).

A full parameter study has been carried out in the frequency–spanwise wavenumber
(ω, β) plane. A contour map showing the regime response to optimal forcing is
displayed in figure 16. As in the case of the optimal initial condition, the global
maximum response to forcing is observed for β = 0.05. It reaches this maximum
for the frequency ω = 0.055. A second region of strong amplification is found for
low frequencies and high spanwise wavenumbers. Here the most amplified structures
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Figure 17. Isosurfaces of optimal forcing and response for the streamwise wavenumber
β = 0.05 subject to forcing at the frequency ω = 0.055. Red/blue colour signifies isosurfaces
corresponding to positive/negative velocities at 10% of the maximum. (a) Streamwise
component of optimal forcing structure. (b) Streamwise velocity component of the response.

consist of streamwise elongated streaks induced by cross-stream forcing. At the largest
spanwise wavenumbers, we also observe that the decay of the amplification when
increasing the forcing frequencies is rather slow. Conversely, the peak corresponding
to excitation of the TS-waves is more pronounced.

A visualization of the overall maximum amplification, found for the spanwise
wavenumber of β = 0.05 and for the same frequency ω = 0.55 yielding the optimal
two-dimensional forcing, is presented below. The optimal forcing in the streamwise
momentum equation and the streamwise velocity component of the optimal response
are shown in figure 17. The optimal forcing structures lean against the shear (see
figure 17a) to optimally trigger the Orr mechanism; the regime long-time response of
the flow, shown in figure 17(b), reveals the appearance of amplified TS-waves at the
downstream end of the computational domain.

The optimal forcing structure at β = 0.6 and the zero frequency has almost all its
energy in the spanwise and wall normal components, that is the flow is forced
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Figure 19. Energy spectra along the streamwise direction for the optimal forcing at
ω = 0.055, β =0.05 (TS-wave) and ω =0, β = 0.6 (streak).

optimally in the wall-normal and spanwise directions as shown, among others,
by Jovanovic & Bamieh (2005) for channel flows. The wall-normal and spanwise
components of the forcing are displayed in figures 18(a) and 18(b). The r.m.s. values
of the streamwise component of the forcing are only 2 % of that of its spanwise and
wall-normal counterparts. The lift-up effect transfers momentum into the streamwise
component (shown in figure 18c), which contains 99.99 % of the energy of the flow
response. The streak amplitude increases in the streamwise direction until the fringe
region is encountered.

The Fourier transform along the streamwise direction of the two disturbances
investigated above is shown in figure 19. As in the case of the optimal initial
conditions in figure 8, the energy density is first integrated in the wall-normal and
spanwise directions. The results indicate that the TS-wave disturbance has a peak at
a relatively high α ≈ 0.17, whereas the zero-frequency forcing is concentrated at the
lowest wavenumbers. The peak at the wavenumber of the most unstable TS-waves is
more evident in the case of forcing than in the case of the optimal initial condition
(see figure 8).
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Figure 20. Downstream evolution of the kinetic energy of the flow integrated over
cross-stream planes. In (a), blue and green lines are used to indicate the response to steady
forcing active everywhere in the domain (Full forcing) and in a short region near the inflow
(localized forcing), respectively. The data are scaled with the magnitude of the forcing computed
as integral over the whole domain. In (b), the blue line corresponds to the case of localized
forcing in (a), whereas green (Parab. eq. final point) indicates the evolution of the optimal
initial condition yielding the largest possible kinetic energy at the downstream location 662δ∗

0
(Levin & Henningson 2003), and the red line (Parab. eq. integral) indicates the evolution of
optimal initial condition yielding the largest integral over the streamwise domain. In order to
make a physically relevant comparison, we have scaled the data pertaining to the ‘localized
forcing’ with the value of the response just downstream of the forcing region. The centre of
the forcing is at the location x = 32.3δ∗

0 corresponding to the optimal upstream location in
Levin & Henningson (2003).

5.2.2. Localized forcing

In this section, we present results obtained by restricting the forcing to a small
region near the inflow of the computational domain. The formulation presented in
§ 4 is altered by multiplying the forcing f with a function λ(x) which is non-zero only
in a short streamwise region. The edges of this region are defined by two smooth
step functions rising from zero to one over a distance of about 1δ∗

0 . The centre of the
forcing is chosen to be at x = 23δ∗

0 with width of 4δ∗
0 , if not otherwise stated.

This problem is physically closer to the case when disturbances are generated
upstream, closer to the leading edge, and their evolution is monitored as they are
convected downstream. Initially, a comparison with optimal upstream disturbances
calculated by means of the parabolized equations is thus presented (see results in
Levin & Henningson 2003).

To this aim, we compute the optimal localized steady forcing for spanwise
wavenumber β = 0.53 at x = 32.3δ∗

0 . These were found to be the location and spanwise
scale of the overall optimal by Levin & Henningson (2003); in their scalings they
correspond to X =0.37 and β =0.53 for an initial perturbation downstream of
the leading edge with Reynolds-number-independent evolution, here assumed to
be Rex =106.

In figure 20, the streamwise growth of the energy of the perturbation obtained
with four different approaches is shown. In figure 20(a), we compare the flow regime
response to steady forcing active everywhere in the domain with the response to forcing
localized upstream. Furthermore, the localized forcing is compared in figure 20(b)
with the evolution of the optimal initial conditions yielding the largest possible kinetic
energy at the downstream location 662δ∗

0 and with the evolution of the optimal
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Figure 21. Wall-normal profiles of the streamwise, spanwise and wall-normal components
of (a) the optimal localized forcing (integrated in the streamwise direction), (b) the initial
condition yielding the largest possible kinetic energy at the downstream location 662δ∗

0 , (c)
the initial condition yielding the largest integral of the disturbance energy over the streamwise
domain.

upstream velocity profile yielding the largest integral of the perturbation energy over
the whole streamwise domain (see also Cathalifaud & Luchini 2000). The two initial
condition problems here are computed with the parabolic stability equations (David
Tempelmann 2009, private communication); the case having as objective function
the integral of the perturbation energy is indeed more relevant for comparison with
the present results. It can be seen that the growth is faster when the forcing is active
everywhere in our control domain because the component-wise transfer of energy
is at work at every streamwise position. The two curves obtained with the parabolic
equations (figure 20a) are similar: faster growth is observed when the control optimizes
over the whole domain, whereas a larger final level is reached when the objective
is limited to the last downstream station. The comparison between the response to
‘localized forcing’ and the ‘parabolic equations’ cases reveals good agreement. The
main differences between the two methods are the different set of equations and the
way the disturbance is introduced. In Levin & Henningson (2003) and Cathalifaud &
Luchini (2000), the linearized boundary-layer equations are used, whereas we use the
Navier–Stokes equations. In addition, an optimal upstream boundary condition is
computed by Levin & Henningson (2003), whereas an optimal forcing is sought here.

Figure 21(a) displays the structure of the optimal forcing function for the case
of localized excitation. The wall-normal profiles shown in the plot are obtained by
integrating the forcing in the streamwise direction. Figures 21(b) and 21(c) depict
instead the optimal initial condition obtained with the parabolic boundary-layer
equations, i.e. a streamwise vortex pair. The structure of the disturbances is remarkably
similar; in the case of the optimal forcing (figure 21a), the action is located closer to
the wall with a relatively weaker wall-normal component. While comparing the cases
in figures 21(b) and 21(c), one can note that the vortices leading to the largest possible
energy downstream are located farther up into the free stream. Conversely, when the
perturbations are required to grow over the whole domain, the disturbance needs to
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Figure 22. (a) Streamwise evolution of the response to steady localized forcing for different
spanwise wavenumbers β . The arrow indicates increasing β . (b) Maximum response versus
spanwise wavenumbers.

be located in the shear layer so that its effect can be readily felt (cf. figure 21a,c).
The results in the figure indicate that forcing the momentum equation is less effective
in the free stream: optimal forcing thus induces streaks which grow for a shorter
downstream distance.

A parameter study is conducted to examine the effect of frequency and spanwise
scale of the localized forcing. First, the results obtained when varying the spanwise
wavenumber are shown (figure 22). The downstream evolution originating from
optimal localized disturbances of zero frequency is displayed for the spanwise
wavenumbers investigated. A slower energy growth is observed for the lower
wavenumbers owing to the lower forcing to the streaks (proportional to β); the
wavenumber giving the largest peak response for the present configuration is β = 0.8.
Forcing of smaller scales induces streaks rapidly, but viscous dissipation causes earlier
decay.

As shown by Andersson et al. (2001), among others, in the range of validity of the
boundary layer equations, there is a coupling between the streamwise and spanwise
length scales of the disturbance. It is in fact possible to show that a streak family
u(x, y, z), defined by the spanwise wavenumber β0, is independent of the Reynolds
number. This results in a scaling property that couples the streamwise and spanwise
scales, implying that the same solution is valid for every combination of the streamwise
location x + x0 (distance from the leading edge) and of β such that their product
stays constant. In other words, this amounts to moving along the plate and varying
the spanwise wavenumber so that the local spanwise wavenumber β0δ

∗/δ∗
0 remains

constant (see also Brandt et al. 2003). To further examine this scaling property, the
streamwise coordinate in figure 22(a) is multiplied by the spanwise wavenumber of the
disturbance and the result is shown in figure 23. Despite the fact that the streamwise
extent of each curve is different, the curves indicating the evolution of the streaky
disturbance collapse notably, thus confirming the similarity of the boundary-layer
streaks.

Finally, we investigate the case of zero spanwise number (pure two-dimensional
disturbances) and vary the temporal frequency. The results are shown in figure 24.
The growth observed here is due to the combined Orr and TS-wave mechanism, and
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Figure 24. (a) Streamwise evolution of the response to localized forcing for different temporal
frequencies ω. The arrow indicates increasing ω. (b) Maximum growth with respect to ω. The
spanwise wavenumber is β =0.

thus the value of the optimal frequency is close to that obtained when forcing over
the whole domain, ω = 0.055. The structure of the optimal forcing for the frequency
with largest amplification is displayed in figure 25. The excitation is localized closer
to the wall, well inside the boundary layer, when compared to the forcing forming
streamwise streaks; see figure 21. Forcing the streamwise momentum equation is
significantly more efficient at triggering the Orr mechanism and the subsequent wave
packet of two-dimensional TS-waves.

6. Conclusions
We have used a Lagrange multiplier technique in conjunction with direct and

adjoint linearized Navier–Stokes equations in order to quantify the growth potential in
the spatially developing flat-plate boundary-layer flow at moderately high Reynolds.
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Spanwise periodic and fully three-dimensional disturbances are investigated. We
consider both the initial conditions leading to the largest possible energy amplification
at time T and the optimal spatial structure of time-periodic forcing. To the best of
our knowledge, the pseudo-spectrum of the governing operator along real frequencies
is computed here for the first time with matrix-free methods. The optimization
framework adopted does not restrict us to assume slow variation of the base
flow in the streamwise direction, common to both the first-order approximation
of the OSS formulation and the more advanced parabolic stability equations (PSE)
approximation. Specifically, we do not, as in the PSE framework, need different
equations to describe the lift-up instability and the wave packet propagation.

For the optimal initial condition we find that the largest potential for growth is
found at small spanwise wavenumbers and consists of upstream tilted structures,
enabling the subsequent disturbances to exploit the Orr mechanism and the local
convective instability of the oblique wave packet of TS-waves. The length and position
of the initial disturbance is related to the final time of the optimization: short time
evolution requires the wave packet to be initiated farther downstream in the region
of largest local instability and vice versa for longer optimization times. The lift-up
instability mechanism inherent to spanwise wavelengths of the order of the boundary-
layer thickness is faster than the Orr/oblique instability; for the present configuration,
the streaks reach their maximum energy earlier; conversely, the TS-wave instability
needs more time to extract the same amount of energy, at the same time travelling
a shorter distance. The evolution of the kinetic energy of these two perturbations in
time and space is displayed in figure 26.

The results further indicate that streamwise vortices of finite length become optimal
once a spatially evolving boundary layer with inflow/outflow conditions is considered.
As concerns the optimal response to periodic forcing, the difference in the two
instabilities is less pronounced. In this case, the Orr/oblique wave instability only
manages to gain a factor of two in energy more than the streak mechanism. The largest
amplification of the local convective instability over the non-modal streak generation
can be explained by the long computational box examined and the relatively high
inflow Reynolds number. Starting closer to the leading edge, one can expect streaks
to become more relevant.
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Three-dimensional localized optimal initial conditions are also computed and the
corresponding wave packets examined. For short optimization times, the optimal
disturbances consist of streaky structures propagating and elongating downstream
without any significant spreading in the lateral direction. For long optimization times,
conversely, the optimal disturbances are characterized by wave packets of TS-waves.
These travel at lower streamwise speed and with faster spreading in the spanwise
direction. The TS-wave packet can achieve the largest possible energy amplification.
Intermediate optimization times are also considered where both the TS- and streak
mechanisms are relevant. The wave packet has therefore features from both scenarios
previously considered: It consists of elongated streaks in the streamwise velocity
component, followed by short-wavelength instability waves, mainly evident in the
cross-stream velocities.

Finally, we examine the effect of upstream disturbances on the boundary-layer
flow. Thus, we introduce a localized forcing near the inflow of the computational
box and compute the forcing structure that provides the largest response over
our control domain. First, we compare with results based on the solution of
the parabolized Navier–Stokes equations: good agreement is obtained despite the
differences between the two methods. Second, we investigate zero-frequency upstream
forcing and show a maximum for perturbations with spanwise wavenumber larger
than that obtained when the forcing location is not constrained. Third, an analysis
of time-periodic two-dimensional forcing is considered: the findings agree with those
obtained with distributed forcing because the flow response corresponds in both cases
to exponentially growing TS-waves at the forcing frequency.

Three different destabilizing mechanisms are considered in this study, all at work in
the boundary layer flow. Although these could be explained using the OSS equations,
they are analysed without any simplifying assumptions. This work is of a more general
character. By choosing an objective function and using the full linearized Navier–
Stokes equations as constraints, we are not limiting ourselves to simple geometries.
Whenever a DNS code is available to accurately describe a flow, all that is needed
in order to investigate the stability characteristics is a linearized version of the
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code and the implementation of the corresponding adjoint equations along with a
wrapper ensuring the correct optimization scheme. The method used here is therefore
applicable to any geometrical configuration.
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